All GreenFiber Insulation sold in the United States must conform to CPSC standard 16 CFR Parts 406 and 409. All GreenFiber Insulation complies with all of the test requirements of 407A (79) and 407G (79). All GreenFiber Insulation is a product of the Federal Trade Commission. For the FedRake, existing and new markets, the R-value of the settled thickness must be taken into account if the settled thickness is less than 3 inches. R-values used in the final R-values claimed in all GreenFiber coverage charts on every bag of insulation.

Installation Benefits
GreenFiber Insulation completely fills gaps and voids around irregular objects such as wiring, plumbing and framing materials in attics and walls. The simplest way to meet the desired R-value is to fasten attic rulers (attic rulers) be placed every 300 sq. ft. The insulation must be at a specified level indicated by the attic ruler and the surrounding material must be reasonably close to the same level. The calculations can be made using a computer or calculator to verify that the claimed R-value is valid. In most cases it can be difficult in older attics to calculate how much insulation is needed when the...
Previous insulation has been disturbed. Install blown cellulose to the level of the installed thickness as measured by the rulers, and it will settle to the claimed thickness on the individual product’s coverage chart.

Reduced Air Leakage

GreenFiber demonstrates its ability to reduce air infiltration more effectively than light density (<1.0pcf) blown fiberglass when used in building components due to two product attributes:

• Completely fills cavities, eliminating voids and gaps, which are common with batts and rolls that can lead to convective heat loss.

Numerous university studies have been conducted comparing the performance of cellulose insulation to other glass. In 1994, the University of Colorado-Denver compared cellulose and fiberglass batts maintained in identical situations during the winter heating season. They found that fiberglass results showed that the cellulose insulated results were 50% less energy due to two product attributes:

• Completely fills cavities, eliminating voids and gaps, which are common with batts and rolls that can lead to convective heat loss.

Convection is the transfer of heat by means of air current. Natural convection results as air warms, becomes less dense and rises. Cooler air replaces this air. Then this air warms and the process continues, thereby forming a convection current.

GreenFiber Insulation demonstrates its ability to reduce air infiltration more effectively than light density (<1.0pcf) blown fiberglass when used in building components due to two product attributes:

• Completely fills cavities, eliminating voids and gaps, which are common with batts and rolls that can lead to convective heat loss.

Previous insulation has been disturbed. Install blown cellulose to the level of the installed thickness as measured by the rulers, and it will settle to the claimed thickness on the individual product’s coverage chart.

Reduced Air Leakage

GreenFiber demonstrates its ability to reduce air infiltration more effectively than light density (<1.0pcf) blown fiberglass when used in building components due to two product attributes:

• Completely fills cavities, eliminating voids and gaps, which are common with batts and rolls that can lead to convective heat loss.

Numerous university studies have been conducted comparing the performance of cellulose insulation to other glass. In 1994, the University of Colorado-Denver compared cellulose and fiberglass batts maintained in identical situations during the winter heating season. They found that fiberglass results showed that the cellulose insulated results were 50% less energy due to two product attributes:

• Completely fills cavities, eliminating voids and gaps, which are common with batts and rolls that can lead to convective heat loss.

Convection is the transfer of heat by means of air current. Natural convection results as air warms, becomes less dense and rises. Cooler air replaces this air. Then this air warms and the process continues, thereby forming a convection current.

GreenFiber demonstrates its ability to reduce air infiltration more effectively than light density (<1.0pcf) blown fiberglass when used in building components due to two product attributes:

• Completely fills cavities, eliminating voids and gaps, which are common with batts and rolls that can lead to convective heat loss.

Convection is the transfer of heat by means of air current. Natural convection results as air warms, becomes less dense and rises. Cooler air replaces this air. Then this air warms and the process continues, thereby forming a convection current.

GreenFiber demonstrates its ability to reduce air infiltration more effectively than light density (<1.0pcf) blown fiberglass when used in building components due to two product attributes:

• Completely fills cavities, eliminating voids and gaps, which are common with batts and rolls that can lead to convective heat loss.

Numerous university studies have been conducted comparing the performance of cellulose insulation to other glass. In 1994, the University of Colorado-Denver compared cellulose and fiberglass batts maintained in identical situations during the winter heating season. They found that fiberglass results showed that the cellulose insulated results were 50% less energy due to two product attributes:

• Completely fills cavities, eliminating voids and gaps, which are common with batts and rolls that can lead to convective heat loss.

Convection is the transfer of heat by means of air current. Natural convection results as air warms, becomes less dense and rises. Cooler air replaces this air. Then this air warms and the process continues, thereby forming a convection current.

GreenFiber demonstrates its ability to reduce air infiltration more effectively than light density (<1.0pcf) blown fiberglass when used in building components due to two product attributes:

• Completely fills cavities, eliminating voids and gaps, which are common with batts and rolls that can lead to convective heat loss.

Convection is the transfer of heat by means of air current. Natural convection results as air warms, becomes less dense and rises. Cooler air replaces this air. Then this air warms and the process continues, thereby forming a convection current.